Fechar

@PhDThesis{Silva:2021:MoDrRa,
               author = "Silva, Graziela Belmira Dias da",
                title = "Modeling dropouts of radiation belt electrons driven by corotating 
                         interaction regions during weak to moderate geomagnetic storms",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2021",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2021-05-14",
             keywords = "Earth’s radiation belts, relativistic electrons, flux dropouts, 
                         radial diffusion, ULF waves, cintur{\~o}es de 
                         radia{\c{c}}{\~a}o da Terra, el{\'e}trons 
                         relativ{\'{\i}}sticos, decr{\'e}scimos de fluxo, difus{\~a}o 
                         radial, ondas ULF.",
             abstract = "The Earths outer radiation belt hosts very dynamic populations of 
                         relativistic and ultrarelativistic electrons trapped by the 
                         geomagnetic field. Flux dropouts are common variations observed in 
                         these electron populations, which can occur after solar wind 
                         drivers hit the magnetosphere, such as corotating interaction 
                         regions (CIRs). Currently, observational evidence indicates that 
                         CIRs promote rapid dropouts produced by magnetopause shadowing and 
                         outward radial diffusion mechanisms. However, it is still 
                         necessary to investigate the role of these two dynamic mechanisms 
                         through modeling. To quantify the contribution of each of them to 
                         loss processes in the outer belt triggered by CIRs passages close 
                         to Earth, this work extensively investigated three cases that 
                         occurred during weak to moderate magnetic storms in 2017, at the 
                         end of NASA Van Allen Probes era. This period was concomitant with 
                         the declining phase of solar cycle 24 between 2016 and 2018. A 
                         catalog of CIRs that includes the chosen case studies was produced 
                         for this interval. Two of the selected events had solar wind 
                         parameters varying at similar values in the CIRs, such as the flow 
                         speed (400 to \& 600 km/s), dynamic pressure (. 15 nPa) and 
                         density (. 40 cm\−3). As a result, the magnetopause was 
                         similarly compressed in both cases to 7RE using the model of Shue 
                         et al. (1998), or to 8RE as simulated with a global 
                         magnetohydrodynamic (MHD) model. However, the electron dropouts in 
                         the two events differed significantly in intensity and in the 
                         affected L shells. From the calculation of the analytical radial 
                         diffusion coefficients using MHD simulations, it was found that 
                         the strongest and deepest dropout was related to more intense 
                         diffusion rates inside the magnetopause during the storm time. 
                         This result was validated by comparisons of the calculated 
                         diffusion rates with observed radial diffusion coefficients 
                         obtained from in-situ measurements of ultra-low frequency waves. 
                         Also, the last closed drift shell (LCDS) calculated with the TS04 
                         magnetosphere model showed that the effect of magnetopause 
                         compression reached L = 5.5 in the most intense dropout event, and 
                         L = 6 for the least intense dropout. Radial diffusion simulations 
                         of these events were run for relativistic populations, using as 
                         inputs the analytical diffusion coefficients (to simulate outward 
                         radial diffusion), a loss term defined outside the LCDS (to 
                         simulate magnetopause shadowing) and a variable condition at the 
                         outer boundary (L = 6), obtained from calibrated phase space 
                         densities measured by GOES-15. The simulated phase space densities 
                         are comparable to the phase space densities observed by the Van 
                         Allen Probes, so that the significant differences between the two 
                         dropouts were reproduced. Simulations of radial diffusion effects 
                         were also performed for the third case, although using only the 
                         radial diffusion coefficients estimated from empirical models. In 
                         this case, however, the simulations overestimated the phase space 
                         densities during the dropout by factors up to 100. This 
                         significant error throughout L < 6 is attributed to an invalid 
                         approximation in L of the outer boundary condition during the 
                         shadowing losses and to substorm injections in this dynamic 
                         condition. The results obtained through the 1D diffusion modeling 
                         for the analyzed events show that magnetopause shadowing and 
                         outward radial diffusion are potential loss mechanisms for 
                         generating dropouts during CIR-magnetosphere couplings, even in 
                         periods of weak to moderate storms. RESUMO: O cintur{\~a}o de 
                         radia{\c{c}}{\~a}o externo da Terra hospeda 
                         popula{\c{c}}{\~o}es muito din{\^a}micas de el{\'e}trons 
                         relativ{\'{\i}}sticos e ultrarelativ{\'{\i}}sticos 
                         aprisionados pelo campo geomagn{\'e}tico. Decr{\'e}scimos de 
                         fluxo (dropouts) s{\~a}o varia{\c{c}}{\~o}es comuns observadas 
                         nessas popula{\c{c}}{\~o}es de el{\'e}trons, as quais podem 
                         ocorrer ap{\'o}s a passagem pela magnetosfera de estruturas do 
                         vento solar, tais como regi{\~o}es corrotantes de 
                         intera{\c{c}}{\~a}o (CIRs). Atualmente, evid{\^e}ncias 
                         observacionais indicam que as CIRs promovem r{\'a}pidos dropouts 
                         pela magnetopausa, por meio dos mecanismos de compress{\~a}o da 
                         magnetopausa e difus{\~a}o radial para fora do cintur{\~a}o. No 
                         entanto, ainda {\'e} necess{\'a}rio investigar o papel desses 
                         dois mecanismos din{\^a}micos por meio de modelagem. Para 
                         quantificar a contribui{\c{c}}{\~a}o de cada um deles em 
                         processos de perda no cintur{\~a}o externo desencadeados por 
                         passagens de CIRs pr{\'o}ximas da Terra, este trabalho investigou 
                         extensivamente tr{\^e}s casos ocorridos durante tempestades 
                         magn{\'e}ticas fracas a moderadas em 2017, no final da era das 
                         sondas Van Allen da NASA. Este per{\'{\i}}odo foi concomitante 
                         com a fase de decl{\'{\i}}nio do ciclo solar 24 entre 2016 e 
                         2018. Um cat{\'a}logo de CIRs que inclui os estudos de caso 
                         abordados foi produzido para este intervalo. Dois desses eventos 
                         escolhidos tiveram par{\^a}metros do vento solar variando em 
                         valores semelhantes nas CIRs, tais como a velocidade de 
                         pr{\'o}tons (400 a > 600 km/s), press{\~a}o din{\^a}mica (. 15 
                         nPa) e densidade (. 40 cm\−3). Como resultado, a 
                         magnetopausa foi comprimida de forma semelhante nos dois casos 
                         para 7RE usando o modelo de Shue et al. (1998), ou para 8RE de 
                         acordo com estimativa de um modelo magnetohidrodin{\^a}mico 
                         global (MHD). No entanto, as perdas de el{\'e}trons nos dois 
                         eventos diferiram significativamente em intensidade e nas camadas 
                         L afetadas. A partir do c{\'a}lculo dos coeficientes de 
                         difus{\~a}o radial anal{\'{\i}}ticos utilizando 
                         simula{\c{c}}{\~o}es MHD, constatou-se que o dropout mais forte 
                         e profundo esteve relacionado a taxas de difus{\~a}o mais 
                         intensas na magnetosfera durante o per{\'{\i}}odo da tempestade 
                         magn{\'e}tica. Esse resultado foi validado por 
                         compara{\c{c}}{\~o}es dessas taxas de simula{\c{c}}{\~a}o com 
                         observa{\c{c}}{\~o}es de taxas de difus{\~a}o calculadas com 
                         medidas in situ de ondas de frequ{\^e}ncia ultra baixa. 
                         Tamb{\'e}m, o par{\^a}metro que determina a {\'u}ltima 
                         {\'o}rbita fechada dos el{\'e}trons (LCDS, last closed drift 
                         shell), calculado com o modelo da magnetosfera TS04 mostrou que o 
                         efeito da compress{\~a}o da magnetopausa atingiu L = 5, 5 no 
                         evento de dropout mais intenso e L = 6 para o caso menos intenso. 
                         Simula{\c{c}}{\~o}es de difus{\~a}o radial desses eventos foram 
                         feitas para popula{\c{c}}{\~o}es relativ{\'{\i}}sticas, usando 
                         como entradas os coeficientes de difus{\~a}o anal{\'{\i}}ticos 
                         (para simular perdas por difus{\~a}o radial), um termo de perda 
                         externo ao LCDS (para simular perdas diretas pela magnetopausa) e 
                         uma condi{\c{c}}{\~a}o vari{\'a}vel no limite mais externo da 
                         simula{\c{c}}{\~a}o (L = 6), obtida por medidas calibradas da 
                         fun{\c{c}}{\~a}o de distribui{\c{c}}{\~a}o de el{\'e}trons 
                         feitas pelo GOES-15. As densidades no espa{\c{c}}o de fase 
                         simuladas s{\~a}o compar{\'a}veis {\`a}s densidades no 
                         espa{\c{c}}o de fase observadas pelas Sondas Van Allen, de forma 
                         que as significativas diferen{\c{c}}as dos dois dropouts foram 
                         reproduzidas. Simula{\c{c}}{\~o}es de efeitos por difus{\~a}o 
                         radial tamb{\'e}m foram feitas para um terceiro caso, usando 
                         apenas os coeficientes de difus{\~a}o radial estimados a partir 
                         de modelos emp{\'{\i}}ricos. Nesse caso, por{\'e}m, as 
                         simula{\c{c}}{\~o}es superestimaram a fun{\c{c}}{\~a}o de 
                         distribui{\c{c}}{\~a}o durante o dropout por fatores de at{\'e} 
                         100. Esse erro significativo {\'e} atribu{\'{\i}}do a efeitos 
                         secund{\'a}rios observados na condi{\c{c}}{\~a}o din{\^a}mica 
                         utilizada em L = 6. Os resultados obtidos atrav{\'e}s da 
                         simula{\c{c}}{\~a}o 1D de difus{\~a}o radial para os eventos 
                         analisados mostram que a compress{\~a}o da magnetopausa e o 
                         mecanismo de difus{\~a}o radial para fora da magnetosfera 
                         s{\~a}o processos potenciais para gera{\c{c}}{\~a}o de dropouts 
                         durante acoplamentos CIR-magnetosfera, mesmo em per{\'{\i}}odos 
                         de tempestades fracas a moderadas.",
            committee = "Wrasse, Cristiano Max (presidente) and Alves, L{\'{\i}}via 
                         Ribeiro (orientadora) and Padilha, Antonio Lopes (orientador) and 
                         Tu, Weichao (orientador) and Souza, Vitor Moura Cardoso e Silva 
                         and Cerda, Rodrigo Andr{\'e}s Miranda and Rojas, Fl{\'a}via Reis 
                         Cardoso",
         englishtitle = "Modelagem de dropouts de el{\'e}trons do cintur{\~a}o de 
                         radia{\c{c}}{\~a}o externo impulsionados por regi{\~o}es 
                         corrotantes de intera{\c{c}}{\~a}o durante tempestades 
                         geomagn{\'e}ticas fracas a moderadas",
             language = "en",
                pages = "188",
                  ibi = "8JMKD3MGP3W34R/44LJNEL",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34R/44LJNEL",
           targetfile = "publicacao.pdf",
        urlaccessdate = "10 maio 2024"
}


Fechar